

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

An Efficient Approach For Processing Bigdata with Incremental and
Iterative Mapreduce

Shaik Moinuddin Ahmed,
Student, M.Tech, Department ofComputer Science and Systems Engineering, Andhra University,

Vishakapatnam, India
shaik5moinuddin@yahoo.co.in

Abstract- A novel Incremental Processing method is proposed for data analysis in order to
keep the mining results up-to-date. Data is continuously arriving by different data
generating factors like social network, online shopping, sensors, e-commerce etc. Because
of this Big Data the results of data mining applications getting stale and disused over time.
Cloud intelligence applications often perform iterative computations (e.g., PageRank) on
constantly changing data sets (e.g., Web graph). While previous studies extend MapReduce
for efficient iterative computations, it is too expensive to perform an entirely new large-
scale MapReduce iterative job to timelyaccommodate new changes to the underlying data
sets. This paper, propose i2MapReduce to support incremental iterative computation. We
observe that in many cases, the changes impact only a very small fraction of the data sets,
and the newly iteratively converged state is quite close to the previously converged state.
i2MapReduce exploits this observation to save re-computation by starting from the
previously converged state, and by performing incremental up-dates on the changing data.
The technique helps in improving the job running time and reduces the running time of
refreshing the results of big data.
Keywords:Big data, Mining, Map reduce, Hadoop, MRBGraph.

I. INTRODUCTION
In typical data mining systems, the mining
procedures require computational
intensive computing units for dataanalysis
and comparisons. A computing platform
is, therefore, needed to have efficient
access to, at least, twotypes of resources,
data and computing processors. In Big
Data mining, data scale is far beyond the
capacitythat a single personal computer
can handle, a typical Big Data processing
framework will rely on cluster computers
with a high-performance computing
platform, with a data mining task being
deployed by running some parallel
programming tools, such as Map Reduce,
on a large number of computing nodes.
The role of thesoftware component is to
make sure that a single data mining task,
such as finding the best match of a query

from a database with billions of records, is
split into many small tasks each of which
is running on one or multiple computing
nodes. Such a Big Data system, which
blends both hardware and software
components, is hardly available without
key industrial stockholder’s support. In
fact, for decades, companies have been
making business decisions based on
transactional data stored in relational
databases.
Big Data mining offers opportunities to go
beyond traditional relational databases to
rely on less structured data weblogs,
social media, e-mail, sensors, and
photographs that can be mined for useful
information. As Modern day Internet
applications have created a need to
manage immense amounts of data
quickly. For example, devices and

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

communication means like social
networking sites, the amount of data
produced by mankind is growing rapidly
every year. It has become increasingly
popular to mine such big data, which
helps in taking business decisions or to
provide better personalized good quality
services. Big data technologies are
important in providing more accurate
analysis, which may lead to more concrete
decision-making resulting in greater
operational efficiencies, cost reductions,
and reduced risks for the business. In
many situations, it is desirable to
periodically refresh the mining
computation in order to keep the mining
results up-to-date. Major business
intelligence companies, such IBM, Oracle,
Teradata, and so on, have all featured
their own products to help customers
acquire and organize these diverse data
sources and coordinate with customer’s
existing data to find new insights and
capitalize on hidden relationships.A large
number of frameworks have been
developed for big data analysis.
MapReduce is one of the simple,
generalized, framework used in
production. Implementations of map-
reduce enable many of the most common
calculations on large-scale data to be
performed on large collections of
computers, efficiently and in a way that is
tolerant of hardware failures during the
computation. Here the main focus is on
improving Map Reducetechnique.
Incremental processing is an advanced
approach to refreshing mining results.
Given the size of the input big data, it is
very heavy weighted to return the entire
computation from scratch. Incrementally
processing the new data of a large data
set, takes state as implicit input and
combines it with new data. MapReduce
programming model is widely used for

large scale and one-time data-intensive
distributed computing, but it lacks for
built-in support for the iterative process.

II. MAPREDUCE BACKGROUND
MapReduce is a one of a promising
technique of computing that manage
large-scale computations in a way that is
tolerant of hardware faults. A MapReduce
job usually partition the input data-set
into independent chunks which are
processed by the map tasks in a
completely parallel manner. MapReduce
includes two main functions, called Map
and Reduce. MapReduce computation is
shown in Figure 1. In the Figure 1 the
system manages the parallel execution,
coordination of a task that execute Map
or Reduce, and also deals with the
possibility that one of these tasks will fail
to execute. These Map tasks turn the
chunk into a sequence of key-value
pairs<K, V>. The way key-value pairs are
produced from the input data is
determined by the code written by the
user for the Map function. The key-value
pairs from each Map task are composed
by a master controller and sorted by key.
The keys are divided among all the Reduce
tasks, so all key-value pairs with the same
key wind up at the same Reduce task. The
Reduce tasks work on one key at a time
and combine all the values associated
with that key in some way. The manner of
combination of values is determined by
the code written by the user for the
Reduce function.

Figure 1. MapReduce computation

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

III. LITERATURE SURVEY
1 MapReduce: Simplified Data Processing
on Large Cluster
From the last five years, many authors and
others at Google have implemented lots
of special purpose computations that
processes large amount of data such as
web request logs, crawl data, etc. To
compute varioustypes of derived data
such as various representation of graph
structure of web documents, most
frequent queryin a day, etc. Many
computations are straightforward. Most
of the time input data is large. This data is
distributed across many machines. In this
system, design a new abstraction that
allows to express the simplecomputation
and trying to perform but hides the
unstructured details of parallelism, data
distribution and loadbalancing in library
and fault tolerance. This abstraction is
inspired by the map and reduce in many
functionallanguages. In this map function
key/value pairs are used. Apply reduce
operation to all the values that
sharedsame key, in order to combine the
derived data appropriately.
2 Incoop: MapReduce for Incremental
Computation
A computer system produces and collects
increasing amounts of data. Services of
Internet companies analyzing to improve
services. Incoop system is generic
framework which is based on Hadoop and
use forincremental computation. Incoop
can detects changes to the input data and
enable the automatic updates of
theoutput by reusing mechanism of fine-
grain incremental processing. There are
two case studies of higher-levelservices
that are: i) Incremental query ii) Log
Processing System without changing a
single line of code ofapplication input data
it improves the significant performance of
results.

3 Big Data Mining using Map Reduce
Big data is large amount of data. Big data
applications where data collection has
grown continuously, itis expensive to
capture, extract and manage and process
data using existing software tools. For
example, Forecasting of weather,
Electricity Supply, Social media. With
increasing size of data in data warehouse
it isexpensive to perform data analysis.
Data cube commonly abstract and
summarize databases. It is way
ofstructuring data in different n
dimensions for analysis on some measure
of interest. For data processing Big
dataprocessing framework relay on
cluster computers and parallel execution
framework provided by Map-Reduce.
4 Iterative processing
A number of distributed frameworks have
newly emerged for big data processing.
HaLoop improves the efficiency of
iterative computation by making the task
scheduler loop-aware and by employing
caching mechanisms. Twister employs a
lightweight iterative MapReduce runtime
system by sensibly constructing a Reduce-
to-Map loop. IMapReduce supports
iterative processing by directly passing the
Reduce outputs to Map and by
distinguishing variant state data from the
static data.
5 Incremental processing for one-step
application.
Besides Incoop, several recent studies aim
at supporting incremental processing for
one-step applications. Incoop detects
changes to the inputs and enables the
automatic update of the outputs by
employing an efficient, fine-grained result
reuse mechanism. This incremental nature
of data suggests that performing large-
scale computations incrementally can
improve efficiency dramatically. But
Incoop supports only task-level

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

incremental processing. So, Incoop do not
allow for reusing the large existing base of
MapReduceprograms.Incoop supports
only one step computation.
6 Incremental processing for iterative
application.
Naiad proposes a timely dataflow
paradigm that allows stateful
computation and arbitrary nested
iterations. To support incremental
iterative computation, programmers have
to completely rewrite their MapReduce
programs for Naiad. In comparison, we
extend the widely used MapReduce
model for incremental iterative
computation. Existing Map-Reduce
programs can be slightly changed to run
on i2MapReduce for incremental
processing
7 iMapReduce: A Distributed Computing
Framework for Iterative Computation
Relational data pervasive in most of the
applications such as a social network
analysis and data mining.
These relational data containing at least
millions and hundreds of relations. This
need distributed computingframeworks
for processing these data on large cluster.
Example of such a framework is
Mapreduce. This paperpresents
iMapreduce, a framework that supports
iterative processing. Users are getting
allow by specified theiterative operations
with map and reduce functions.

IV. PROBLEM DESCRIPTION
Many online data sets grow incrementally
over time as new entries are slowly added
and existing entries are deleted or
modified. Taking advantage of this
instrumentality, systems for incremental
bulk data processing, such as Google‟s
Percolator, can achieve efficient updates.
This efficiency, however, comes at the
price of losing compatibility with the

simple programming models offered by
non-incremental systems, e.g., Map
Reduce, and more importantly, requires
the programmer to implement
application-specific dynamic/ incremental
algorithms, ultimately increasing
algorithm and code complexity. The task-
level coarse-grain incremental processing
system, Incoop, is not publicly available.
Therefore, we cannot compare
i2MapReduce with Incoop. Instead we
compare i2MapReduce with existing
MapReduce model on Hadoop.

4.1 Existing System
A number of previous studies have
followed this principle and designed new
programming models to support
incremental processing. Unfortunately,
the new programming models are
drastically different from MapReduce,
requiring programmers to completely re-
implement their algorithms. On the other
hand, Incoop extends MapReduce to
support incremental processing. However,
it has two main limitations. First, Incoop
supports only tasklevelincremental
processing. That is, it saves and reuses
states at the granularity of individual Map
and Reduce tasks. Each task typically
processes a large number of key-value
pairs (kv-pairs). If Incoop detects any data
changes in the input of a task, it will rerun
the entire task. While this approach easily
leverages existing MapReduce features for
state savings, it may incur a large amount
of redundant computation if only a small
fraction of kv-pairs havechanged in a task.
Second, Incoop supports only one-step
computation, while important mining
algorithms, such as PageRank, require
iterative computation. Incoop would treat
each iteration as a separate MapReduce
job.

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

 Disadvantages of Existing system:
1. The existing system cannot gives
promising output which enough for
working in the Big Data.
2. The update of any data will result in re-
run the complete setup.
3. It does support only task-level
incremental processing.
4. It does support only one-step
computation.

4.2 PROPOSED SYSTEM: -
The proposed i2MapReduce, an extension
to MapReduce that supports fine-grain
incremental processing for both one-step
and iterative computation. Compared to
previous solutions, i2MapReduce
incorporates the following three novel
features:

1) Fine-grain incremental processing using
MRBG-Store. Unlike Incoop, i2MapReduce
supports kv-pair level fine-grain
incremental processing in order to
minimize the amount of
recomputationasmuch as possible. The
model the kv-pair level data flow and data
dependence in a MapReduce computation
as a bipartite graph, called MRBGraph.

2) General-purpose iterative computation
with modest extension to MapReduce
API.:our current proposal provides
general-purpose support, including not
only one-to-one, but also one-to-
many,many-to-one, and many-to-many
correspondence. Enhance the Map API to
allow users to easily express loop-
invariant structure data, and propose a
Project API function to express the
correspondence from Reduce to Map.
While users need to slightly modify their
algorithms in order to take full advantage
of i2MapReduce.

3) Incremental processing for iterative
computation. Incremental iterative
processing is substantially more
challenging than incremental one-step
processing because even a small number
of updates may propagate to affect a large
portion of intermediate states after a
number of iterations. To address this
problem, this paper proposes to reuse the
converged state from the previous
computation and employ a change
propagation control (CPC) mechanism.
Also enhance the MRBG-Store to better
support the access patterns in
incremental iterative processing.

MRBG-Store
The MRBG-Store supports the
preservation and retrieval of fine-grain
MRBGraph states for incremental
processing. User sees two main
requirements on the MRBG-Store. First,
the MRBG-Store must incrementally store
the evolving MRBGraph. Consider a
sequence of jobs that incrementally
refresh the results of a big data mining
algorithm. As input data evolves, the
intermediate states in the MRBGraph will
also evolve. It would be wasteful to store
the entire MRBGraph of each subsequent
job. Instead, user would like to obtain and
store only the updated part of the
MRBGraph. Second, the MRGB-Store must
support efficient retrieval of preserved
states of given Reduce instances. For
incremental Reduce computation,
i2MapReduce re-computes the
Reduceinstance associated with each

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

changed MRBGraph edge.

Figure 2: MRBG Store

For a changed edge, it queries the MRGB-
Store to retrieve the preserved states of
the in-edges of the associated K2, and
merge the preserved states with the
newly computed edge changes as shown
in figure 2.

MRBG Architecture: -
Bipartite Graph: -a bipartite graph (or
bigraph) is a graph whose vertices can be
divided into two disjoint sets U and V
(that is, U and V are each independent
sets) such that every edge connects a
vertex in U to one in V as shown in figure
3. Vertex set U and V are often denoted as
partite sets. Equivalently, a bipartite graph
is a graph that does not contain any odd-
length cycles. The two sets U and V may
be thought of as a colouring of the graph
with two colours: if one colours all nodes
in U blue, and all nodes in V green, each
edge has endpoints of differing colours, as
is required in the graph colouring
problem. One often writes G= (U, V, E) to
denote a bipartite graph whose partition
has the parts U and V, with E denoting the
edges of the graph. If a bipartite graph is
not connected, it may have more than

one bipartition; in this case, the (U, V, E)
notation is helpful in specifying one
particular bipartition that may be of
importance in an application. If |U| and
|V|, that is, if the two subsets have equal
cardinality, then G is called a balanced
bipartite graph. If all vertices on the same
side of the bipartition have the same
degree, then G is called biregular.

Figure 3: Bipartite Graph

MRBG Dataflow: -
MRBGraph Abstraction: User use a
MRBGraph abstraction to model the data
flow in MapReduce. Each vertex in the
Map task represents an individual Map
function call instance on a pair of (K1, V
1). Each vertex in the Reduce task
represents an individual Reduce function
call instance on a group of (K2, {V 2}). An
edge from a Map instance to a Reduce
instance means that the Map instance
generates a (K2, V 2) that is shuffled to
become part of the input to the Reduce
instance. The input of Reduce instance a
comes from Map instance 0, 2, and 4.
MRBGraphedges are the fine-grain states
M that user would like to preserve for
incremental processing. An edge contains
three pieces of information: (i) the source
Map in Incremental data acquisition can
significantly save the resources for data
collection; it does not re-capture the
whole data set but only capture the
revisions since the last time that data was
captured. (ii) the destination Reduce
instance (as identified by K2), and (iii) the

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

edge value (i.e. V 2). Since Map input key
K1 may not be unique, i2MapReduce
generates a globally unique Map key MK
for each Map instance.

Figure 4: Data Flow of MRBGraph.
Therefore, i2MapReduce will preserve
(K2, MK, V2) for each MRBGraph edge as
shown in figure 4.

ALGORITHMS: -
Algorithm 1. Query Algorithm in MRBG-
Store
Input queried key: k; the list of queried
keys: L
Output chunk k
1: if !readcache.contains(k) then
2: gap <-0, w<- 0
3: i k’s index inL //That is, Li = k
4: while gap < T and w + gap + length(Li)
<read_cache:
size do
5: w <-w + gap +length(Li)
6: gap <-pos(Li+1)-pos(Li) – length(Li)
7: i<- i + 1
8: end while
9: starting from pos(k), read w bytes into
read cache
10: end if
11: return read cache.get_chunk(k)

Algorithm 2. PageRank in MapReduce
PageRank is a well-known iterative graph
algorithm for ranking web pages. It
computes a ranking score for eachvertex
in a graph. After initializing all ranking
scores, the computation performs a
MapReduce job per iteration. i and j are
vertex ids, Ni is the set of out-neighbor
vertices of i, Ri is i’s ranking score that is
updated iteratively. ‘|’ means
concatenation. All Ri’s are initialized to
one2. The Reduce instance on vertex j
updates Rj by summing the Ri,j received
from all its in-neighborsi, and applying a
damping factor d.
Map Phase input: <i, Ni|Ri>
1: output <i, Ni >
2: for all j in Ni do
3: Ri,j = Ri |Ni|
4: output < j, Ri,j>
5: end for
Reduce Phase input: < j, {Ri,j ,Nj} >
6: Rj = dPiRi,j + (1 − d)
7: output < j, Nj |Rj>

Algorithm3. kmeans in MapReduce
Kmeans is a commonly used clustering
algorithm that partitions points into k
clusters. User denote the ID of a point as
pid, and its feature values pval. The
computation starts with selecting k
random points as cluster centroids set
{cid, cval}.As shown in Algorithm 3, in
each iteration, the Map instance on a
point pid assigns the point to the nearest
centroid. The Reduce instance on a
centroid cid updates the centroid by
averaging the values of all assigned points
{pval}.

Map Phase input: <pid, pval|{cid, cval} >
1: cid← find the nearest centroid of pval
in {cid, cval}
2: output <cid, pval> Reduce Phase input:
<cid, {pval} >

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

3: cval← compute the average of {pval}
4: output <cid, cval>

Algorithm4 GIM-V in MapReduce
Generalized Iterated Matrix-Vector
multiplication (GIM-V) is an abstraction of
many iterative graph mining
operations.These graph mining algorithms
can be generally represented by operating
on an n × n matrix M and a vector v of size
n. Suppose both the matrix and the vector
are divided into sub-blocks. Let mi,j
denote the (i, j)-th block of M and vj
denote the j- th block of v. The
computation steps are similar to those of
the matrix-vector multiplication and can
be abstracted into three operations: (1)
mvi,j = combine2(mi,j ,vj); (2) v′i =
combineAlli({mvi,j}); and (3) vi = assign(vi,
v′ i).User can compare combine2 to the
multiplication between mi,j and vj , and
compare combineAll to the sum of mvi,j
for row i. Algorithm 4 shows the
MapReduce implementation with two
jobs for each iteration. The first job
assigns vector block vj to multiple matrix
blocks mi,j (∀i) and performs
combine2(mi,j , vj) to obtain mvi,j . The
second job groups the mvi,j and vi on the
same i, performs the combineAll({mvi,j})
operation, and updates vi using assign (vi ,
v′ i).

Map Phase 1 input:< (i, j),mi,j> or < j, vj>
1: if kv-pair is < (i, j),mi,j> then
2: output < (i, j),mi,j>
3: else if kv-pair is < j, vj> then
4: for all i blocks in j’s row do
5: output < (i, j), vj>
6: end for
7: end if
Reduce Phase 1 input: < (i, j), {mi,j , vj} >
8: mvi,j = combine2(mi,j , vj)
9: output <i, mvi,j>, < j, vj>
Map Phase 2: output all inputs

Reduce Phase 2 input: <i, {mvi,j , vi} >
10: v′ i← combineAll({mvi,j})
11: vi ← assign(vi, v′ i)
12: output <i, vi >

Implementation
Proposed approach works in the following
manner,
Step 1: Collection of evolving datasets
The evolving datasets will be collected for
mapping and reduction.
Step 2: Development of mapping
technique
The mapping techniques will be
developed and the data will be mapped
using these mapping techniques as shown
in figure 5 using the concept of MRBG.
Step 3: Development of reduction
technique
The reduction techniques will be
developed and the mapped data will be
reduced using these reduction techniques.
Step 4: Implementation on PageRank and
K-means algorithm and GIM-V:
Step 5: Result Analysis and Comparison

Figure 5: i2MapReduce

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

1 Advantages of the Proposed System:

 To our knowledge, i2MapReduce is
the first MapReducebased solution
that efficiently supports
incremental iterative computation.

 AMRBGStore is designed to
preserve the fine-grain states in
the MRBGraph and support
efficient queries to retrieve fine-
grain states for incremental
processing.

 Unlike Incoop, i2MapReduce
supports kv-pair level fine-grain
incremental processing in order to
minimize the amount of re-
computation as much as possible.

 The current proposal provides
general purpose support, including
not only one-to-one, but also one-
to-many, many-to-one, and many-
to-many correspondence.

 User enhance the Map API to allow
users to easily express loop-
invariant structure data, and user
propose a Project API function to
express the correspondence from
Reduce to Map.

 While users need to slightly modify
their algorithms in order to take
full advantage of i2MapReduce,
such modification is modest
compared to the effort to re-
implement algorithms on a
completely different programming
paradigm.

 User propose to reuse the
converged state from the previous
computation and employ a change

propagation control mechanism.

2 Disadvantages of the Proposed System
Supporting Smaller Number of State kv-
pairs. In some applications, the number of
state keys is smaller than n. Kmeans is an
extreme case with only a single state kv-

pair. In these applications, the total size of
the state data is typically quite small.
Therefore, the backward transfer
overhead is low. Under such situation,
i2MapReduce does not apply the above
partition functions. Instead, it partitions
the structure kv-pairs using MapReduce‟s
default approach, while replicating the
state data to each partition.

V. EXPERIMENTAL RESULTS AND
ANALYSIS

After implementing the programming
models on three different raw data sets,
the result obtained for k-means
algorithm,PageRank algorithm and GIM-V,
is depicted in figure6.it shows the
performance analysis of i2mapreduce k-
means algorithm,PageRank algorithm and
GIM-Vi.e., shows the decrease in time
consumed with respect to i2mapreduce
model compared to that of MapReduce
model.

Figure 6: PageRank,K-means and GIM-V
Algorithm Performance analysis using
i2MapReduce,

VI. Conclusion And Future
Enhancement:

We have described I2MapReduce-Fine
Grain Incremental Processing based on

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

MapReduceframework. That supports k/v
pair level fine-grain incremental
processing to minimize the amount of
recomputation and MRBG-Store to
support efficient quires for retrieving fine-
grain states for incrementalprocessing and
to preserve the fine-grain states in MRBG
This framework combines a fine-grain
advanceengine, a general-purpose
iterative model, and a set of effective
techniques for fine-grain incremental
iterativecomputation. Real-machine
experiments show that I2MapReduce can
significantly reduce the run time to
refreshbig data mining result compared to
re-computation on both plain and
iterative MapReduce. We are studying
cost-aware execution optimization that
intelligently uses the MRBGraph state and
selects the optimal executionstrategy
based on online cost analysis.
In future, we are trying to identify the
data changes whenever there is a dynamic
updation using FP algorithm. Though
retrieval of data becomes easier with map
reduce, the interdependency of map and
reduce tasks requires more fault
tolerance. So, we are focusing on good
fault tolerance solution by analysing and
experimenting with various computing
frameworks like pagerank, k-means,GIM-V
etc.wepropse that array based
languages,like R are ideal to express these
algorithms for processing bigdata.

References

[1] Yanfeng Zhang, Shimin Chen, Qiang
Wang, and Ge Yu, Member, IEEE,
“i2MapReduce: Incremental MapReduce
for Mining Evolving Big Data” IEEE
Transactions On Knowledge And Data
Engineering, Vol. 27, No. 7, July 2015.

[2] J. Dean and S. Ghemawat,
“Mapreduce: Simplified data processing

on large clusters,” in Proc. 6th Conf. Symp.
Opear. Syst. Des. Implementation, 2004,
p. 10.
[3] Y. Zhang, Q. Gao, L. Gao, and C. Wang,
“imapreduce: A distributed computing
framework for iterative computation,” J.
Grid Computing., vol. 10, no. 1, pp. 47–68,
2012.
[4] C. Yan, X. Yang, Z. Yu, M. Li, and X. Li,
“IncMR: Incremental data processing
based on mapreduce,” in Proc. IEEE 5th
Int. Conf. Cloud Computing., 2012, pp.
534–541.
[5] P. Bhatotia, A. Wieder, R. Rodrigues, U.
A. Acar, and R. Pasquin, “Incoop:
Mapreduce for incremental
computations,” in Proc. 2nd ACM Symp.
Cloud Computing., 2011, pp. 7:1–7:14.
[6] J. Ekanayake, H. Li, B. Zhang, T.
Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,
“Twister: A runtime for iterative
mapreduce,” in Proc. 19th ACM Symp.
High Performance Distributed Computing.,
2010, pp. 810–818.
*7+ D. Peng and F. Dabek, “Large-scale
incremental processing using distributed
transactions and notifications,” in Proc.
9th USENIX Conf. Oper. Syst. Des.
Implementation, 2010, pp. 1–15.
[8] J. Ekanayake, H. Li, B. Zhang, T.
Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,
“Twister: A runtime for iterative
mapreduce,” in Proc. 19th ACM Symp.
High Performance Distributed Computing.,
2010, pp. 810–818.
[9] The R project for statistical computing.
http://www.r-project.org.
[10] ShivaramVenkataraman,Indrajit Roy
Alvin and Au Young Robert S. Schreiber,”
Using R for Iterative and Incremental
Processing,” in HotCloud'12 Proceedings
of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing Pages 11-11

