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Abstract- A novel Incremental Processing method is proposed for data analysis in order to 
keep the mining results up-to-date. Data is continuously arriving by different data 
generating factors like social network, online shopping, sensors, e-commerce etc. Because 
of this Big Data the results of data mining applications getting stale and disused over time. 
Cloud intelligence applications often perform iterative computations (e.g., PageRank) on 
constantly changing data sets (e.g., Web graph). While previous studies extend MapReduce 
for efficient iterative computations, it is too expensive to perform an entirely new large-
scale MapReduce iterative job to timelyaccommodate new changes to the underlying data 
sets. This paper, propose i2MapReduce to support incremental iterative computation. We 
observe that in many cases, the changes impact only a very small fraction of the data sets, 
and the newly iteratively converged state is quite close to the previously converged state. 
i2MapReduce exploits this observation to save re-computation by starting from the 
previously converged state, and by performing incremental up-dates on the changing data. 
The technique helps in improving the job running time and reduces the running time of 
refreshing the results of big data. 
Keywords:Big data, Mining, Map reduce, Hadoop, MRBGraph. 
 

I. INTRODUCTION 
In typical data mining systems, the mining 
procedures require computational 
intensive computing units for dataanalysis 
and comparisons. A computing platform 
is, therefore, needed to have efficient 
access to, at least, twotypes of resources, 
data and computing processors. In Big 
Data mining, data scale is far beyond the 
capacitythat a single personal computer 
can handle, a typical Big Data processing 
framework will rely on cluster computers 
with a high-performance computing 
platform, with a data mining task being 
deployed by running some parallel 
programming tools, such as Map Reduce, 
on a large number of computing nodes. 
The role of thesoftware component is to 
make sure that a single data mining task, 
such as finding the best match of a query 

from a database with billions of records, is 
split into many small tasks each of which 
is running on one or multiple computing 
nodes. Such a Big Data system, which 
blends both hardware and software 
components, is hardly available without 
key industrial stockholder’s support. In 
fact, for decades, companies have been 
making business decisions based on 
transactional data stored in relational 
databases. 
Big Data mining offers opportunities to go 
beyond traditional relational databases to 
rely on less structured data weblogs, 
social media, e-mail, sensors, and 
photographs that can be mined for useful 
information. As Modern day Internet 
applications have created a need to 
manage immense amounts of data 
quickly. For example, devices and 
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communication means like social 
networking sites, the amount of data 
produced by mankind is growing rapidly 
every year. It has become increasingly 
popular to mine such big data, which 
helps in taking business decisions or to 
provide better personalized good quality 
services. Big data technologies are 
important in providing more accurate 
analysis, which may lead to more concrete 
decision-making resulting in greater 
operational efficiencies, cost reductions, 
and reduced risks for the business. In 
many situations, it is desirable to 
periodically refresh the mining 
computation in order to keep the mining 
results up-to-date. Major business 
intelligence companies, such IBM, Oracle, 
Teradata, and so on, have all featured 
their own products to help customers 
acquire and organize these diverse data 
sources and coordinate with customer’s 
existing data to find new insights and 
capitalize on hidden relationships.A large 
number of frameworks have been 
developed for big data analysis. 
MapReduce is one of the simple, 
generalized, framework used in 
production. Implementations of map-
reduce enable many of the most common 
calculations on large-scale data to be 
performed on large collections of 
computers, efficiently and in a way that is 
tolerant of hardware failures during the 
computation. Here the main focus is on 
improving Map Reducetechnique. 
Incremental processing is an advanced 
approach to refreshing mining results. 
Given the size of the input big data, it is 
very heavy weighted to return the entire 
computation from scratch. Incrementally 
processing the new data of a large data 
set, takes state as implicit input and 
combines it with new data. MapReduce 
programming model is widely used for 

large scale and one-time data-intensive 
distributed computing, but it lacks for 
built-in support for the iterative process.  
 

II. MAPREDUCE BACKGROUND 
MapReduce is a one of a promising 
technique of computing that manage 
large-scale computations in a way that is 
tolerant of hardware faults. A MapReduce 
job usually partition the input data-set 
into independent chunks which are 
processed by the map tasks in a 
completely parallel manner. MapReduce 
includes two main functions, called Map 
and Reduce. MapReduce computation is 
shown in Figure 1. In the Figure 1 the 
system manages the parallel execution, 
coordination of a task that execute Map 
or Reduce, and also deals with the 
possibility that one of these tasks will fail 
to execute. These Map tasks turn the 
chunk into a sequence of key-value 
pairs<K, V>. The way key-value pairs are 
produced from the input data is 
determined by the code written by the 
user for the Map function. The key-value 
pairs from each Map task are composed 
by a master controller and sorted by key. 
The keys are divided among all the Reduce 
tasks, so all key-value pairs with the same 
key wind up at the same Reduce task. The 
Reduce tasks work on one key at a time 
and combine all the values associated 
with that key in some way. The manner of 
combination of values is determined by 
the code written by the user for the 
Reduce function. 

 
Figure 1. MapReduce computation 
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III. LITERATURE SURVEY  
1 MapReduce: Simplified Data Processing 
on Large Cluster 
From the last five years, many authors and 
others at Google have implemented lots 
of special purpose computations that 
processes large amount of data such as 
web request logs, crawl data, etc. To 
compute varioustypes of derived data 
such as various representation of graph 
structure of web documents, most 
frequent queryin a day, etc. Many 
computations are straightforward. Most 
of the time input data is large. This data is 
distributed across many machines. In this 
system, design a new abstraction that 
allows to express the simplecomputation 
and trying to perform but hides the 
unstructured details of parallelism, data 
distribution and loadbalancing in library 
and fault tolerance. This abstraction is 
inspired by the map and reduce in many 
functionallanguages. In this map function 
key/value pairs are used. Apply reduce 
operation to all the values that 
sharedsame key, in order to combine the 
derived data appropriately. 
2 Incoop: MapReduce for Incremental 
Computation 
A computer system produces and collects 
increasing amounts of data. Services of 
Internet companies analyzing to improve 
services. Incoop system is generic 
framework which is based on Hadoop and 
use forincremental computation. Incoop 
can detects changes to the input data and 
enable the automatic updates of 
theoutput by reusing mechanism of fine-
grain incremental processing. There are 
two case studies of higher-levelservices 
that are: i) Incremental query ii) Log 
Processing System without changing a 
single line of code ofapplication input data 
it improves the significant performance of 
results. 

3 Big Data Mining using Map Reduce 
Big data is large amount of data. Big data 
applications where data collection has 
grown continuously, itis expensive to 
capture, extract and manage and process 
data using existing software tools. For 
example, Forecasting of weather, 
Electricity Supply, Social media. With 
increasing size of data in data warehouse 
it isexpensive to perform data analysis. 
Data cube commonly abstract and 
summarize databases. It is way 
ofstructuring data in different n 
dimensions for analysis on some measure 
of interest. For data processing Big 
dataprocessing framework relay on 
cluster computers and parallel execution 
framework provided by Map-Reduce. 
4 Iterative processing  
A number of distributed frameworks have 
newly emerged for big data processing. 
HaLoop improves the efficiency of 
iterative computation by making the task 
scheduler loop-aware and by employing 
caching mechanisms. Twister employs a 
lightweight iterative MapReduce runtime 
system by sensibly constructing a Reduce-
to-Map loop. IMapReduce supports 
iterative processing by directly passing the 
Reduce outputs to Map and by 
distinguishing variant state data from the 
static data. 
5 Incremental processing for one-step 
application.  
Besides Incoop, several recent studies aim 
at supporting incremental processing for 
one-step applications. Incoop detects 
changes to the inputs and enables the 
automatic update of the outputs by 
employing an efficient, fine-grained result 
reuse mechanism. This incremental nature 
of data suggests that performing large-
scale computations incrementally can 
improve efficiency dramatically. But 
Incoop supports only task-level 
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incremental processing. So, Incoop do not 
allow for reusing the large existing base of 
MapReduceprograms.Incoop supports 
only one step computation.  
6 Incremental processing for iterative 
application.  
Naiad proposes a timely dataflow 
paradigm that allows stateful 
computation and arbitrary nested 
iterations. To support incremental 
iterative computation, programmers have 
to completely rewrite their MapReduce 
programs for Naiad. In comparison, we 
extend the widely used MapReduce 
model for incremental iterative 
computation. Existing Map-Reduce 
programs can be slightly changed to run 
on i2MapReduce for incremental 
processing 
7 iMapReduce: A Distributed Computing 
Framework for Iterative Computation 
Relational data pervasive in most of the 
applications such as a social network 
analysis and data mining. 
These relational data containing at least 
millions and hundreds of relations. This 
need distributed computingframeworks 
for processing these data on large cluster. 
Example of such a framework is 
Mapreduce. This paperpresents 
iMapreduce, a framework that supports 
iterative processing. Users are getting 
allow by specified theiterative operations 
with map and reduce functions. 
 

IV. PROBLEM DESCRIPTION  
Many online data sets grow incrementally 
over time as new entries are slowly added 
and existing entries are deleted or 
modified. Taking advantage of this 
instrumentality, systems for incremental 
bulk data processing, such as Google‟s 
Percolator, can achieve efficient updates. 
This efficiency, however, comes at the 
price of losing compatibility with the 

simple programming models offered by 
non-incremental systems, e.g., Map 
Reduce, and more importantly, requires 
the programmer to implement 
application-specific dynamic/ incremental 
algorithms, ultimately increasing 
algorithm and code complexity. The task-
level coarse-grain incremental processing 
system, Incoop, is not publicly available. 
Therefore, we cannot compare 
i2MapReduce with Incoop. Instead we 
compare i2MapReduce with existing 
MapReduce model on Hadoop. 
 
4.1 Existing System  
A number of previous studies have 
followed this principle and designed new 
programming models to support 
incremental processing. Unfortunately, 
the new programming models are 
drastically different from MapReduce, 
requiring programmers to completely re-
implement their algorithms. On the other 
hand, Incoop extends MapReduce to 
support incremental processing. However, 
it has two main limitations. First, Incoop 
supports only tasklevelincremental 
processing. That is, it saves and reuses 
states at the granularity of individual Map 
and Reduce tasks. Each task typically 
processes a large number of key-value 
pairs (kv-pairs). If Incoop detects any data 
changes in the input of a task, it will rerun 
the entire task. While this approach easily 
leverages existing MapReduce features for 
state savings, it may incur a large amount 
of redundant computation if only a small 
fraction of kv-pairs havechanged in a task. 
Second, Incoop supports only one-step 
computation, while important mining 
algorithms, such as PageRank, require 
iterative computation. Incoop would treat 
each iteration as a separate MapReduce 
job.  
 



 
 
 

ISSN 2454-9924 Volume: 7 Issue: 3(2016) 

 Disadvantages of Existing system: 
1. The existing system cannot gives 
promising output which enough for 
working in the Big Data. 
2. The update of any data will result in re-
run the complete setup. 
3. It does support only task-level 
incremental processing. 
4. It does support only one-step 
computation. 
 
4.2 PROPOSED SYSTEM: - 
The proposed i2MapReduce, an extension 
to MapReduce that supports fine-grain 
incremental processing for both one-step 
and iterative computation. Compared to 
previous solutions, i2MapReduce 
incorporates the following three novel 
features:  
 
1) Fine-grain incremental processing using 
MRBG-Store. Unlike Incoop, i2MapReduce 
supports kv-pair level fine-grain 
incremental processing in order to 
minimize the amount of 
recomputationasmuch as possible. The 
model the kv-pair level data flow and data 
dependence in a MapReduce computation 
as a bipartite graph, called MRBGraph.  
 
2) General-purpose iterative computation 
with modest extension to MapReduce 
API.:our current proposal provides 
general-purpose support, including not 
only one-to-one, but also one-to-
many,many-to-one, and many-to-many 
correspondence. Enhance the Map API to 
allow users to easily express loop-
invariant structure data, and propose a 
Project API function to express the 
correspondence from Reduce to Map. 
While users need to slightly modify their 
algorithms in order to take full advantage 
of i2MapReduce.  
 

3) Incremental processing for iterative 
computation. Incremental iterative 
processing is substantially more 
challenging than incremental one-step 
processing because even a small number 
of updates may propagate to affect a large 
portion of intermediate states after a 
number of iterations. To address this 
problem, this paper proposes to reuse the 
converged state from the previous 
computation and employ a change 
propagation control (CPC) mechanism. 
Also enhance the MRBG-Store to better 
support the access patterns in 
incremental iterative processing.  
 
MRBG-Store 
The MRBG-Store supports the 
preservation and retrieval of fine-grain 
MRBGraph states for incremental 
processing. User sees two main 
requirements on the MRBG-Store. First, 
the MRBG-Store must incrementally store 
the evolving MRBGraph. Consider a 
sequence of jobs that incrementally 
refresh the results of a big data mining 
algorithm. As input data evolves, the 
intermediate states in the MRBGraph will 
also evolve. It would be wasteful to store 
the entire MRBGraph of each subsequent 
job. Instead, user would like to obtain and 
store only the updated part of the 
MRBGraph. Second, the MRGB-Store must 
support efficient retrieval of preserved 
states of given Reduce instances. For 
incremental Reduce computation, 
i2MapReduce re-computes the 
Reduceinstance associated with each 
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changed MRBGraph edge. 

 
Figure 2: MRBG Store 

 
For a changed edge, it queries the MRGB-
Store to retrieve the preserved states of 
the in-edges of the associated K2, and 
merge the preserved states with the 
newly computed edge changes as shown 
in figure 2. 
 
MRBG Architecture: - 
Bipartite Graph: -a bipartite graph (or 
bigraph) is a graph whose vertices can be 
divided into two disjoint sets U and V 
(that is, U and V are each independent 
sets) such that every edge connects a 
vertex in U to one in V as shown in figure 
3. Vertex set U and V are often denoted as 
partite sets. Equivalently, a bipartite graph 
is a graph that does not contain any odd-
length cycles. The two sets U and V may 
be thought of as a colouring of the graph 
with two colours: if one colours all nodes 
in U blue, and all nodes in V green, each 
edge has endpoints of differing colours, as 
is required in the graph colouring 
problem. One often writes G= (U, V, E) to 
denote a bipartite graph whose partition 
has the parts U and V, with E denoting the 
edges of the graph. If a bipartite graph is 
not connected, it may have more than 

one bipartition; in this case, the (U, V, E) 
notation is helpful in specifying one 
particular bipartition that may be of 
importance in an application. If |U| and 
|V|, that is, if the two subsets have equal 
cardinality, then G is called a balanced 
bipartite graph. If all vertices on the same 
side of the bipartition have the same 
degree, then G is called biregular.  

 
Figure 3: Bipartite Graph 

MRBG Dataflow: - 
MRBGraph Abstraction: User use a 
MRBGraph abstraction to model the data 
flow in MapReduce. Each vertex in the 
Map task represents an individual Map 
function call instance on a pair of (K1, V 
1). Each vertex in the Reduce task 
represents an individual Reduce function 
call instance on a group of (K2, {V 2}). An 
edge from a Map instance to a Reduce 
instance means that the Map instance 
generates a (K2, V 2) that is shuffled to 
become part of the input to the Reduce 
instance. The input of Reduce instance a 
comes from Map instance 0, 2, and 4. 
MRBGraphedges are the fine-grain states 
M that user would like to preserve for 
incremental processing. An edge contains 
three pieces of information: (i) the source 
Map in Incremental data acquisition can 
significantly save the resources for data 
collection; it does not re-capture the 
whole data set but only capture the 
revisions since the last time that data was 
captured. (ii) the destination Reduce 
instance (as identified by K2), and (iii) the 
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edge value (i.e. V 2). Since Map input key 
K1 may not be unique, i2MapReduce 
generates a globally unique Map key MK 
for each Map instance. 

 
Figure 4: Data Flow of MRBGraph. 
Therefore, i2MapReduce will preserve 
(K2, MK, V2) for each MRBGraph edge as 
shown in figure 4. 
 
ALGORITHMS: - 
Algorithm 1. Query Algorithm in MRBG-
Store  
Input queried key: k; the list of queried 
keys: L  
Output chunk k  
1: if !readcache.contains(k) then  
2: gap <-0, w<- 0  
3: i k’s index inL //That is, Li = k  
4: while gap < T and w + gap + length(Li) 
<read_cache:  
size do  
5: w <-w + gap +length(Li)  
6: gap <-pos(Li+1)-pos(Li) – length(Li)  
7: i<- i + 1  
8: end while  
9: starting from pos(k), read w bytes into 
read cache  
10: end if  
11: return read cache.get_chunk(k)  

Algorithm 2. PageRank in MapReduce 
PageRank is a well-known iterative graph 
algorithm for ranking web pages. It 
computes a ranking score for eachvertex 
in a graph. After initializing all ranking 
scores, the computation performs a 
MapReduce job per iteration. i and j are 
vertex ids, Ni is the set of out-neighbor 
vertices of i, Ri is i’s ranking score that is 
updated iteratively. ‘|’ means 
concatenation. All Ri’s are initialized to 
one2. The Reduce instance on vertex j 
updates Rj by summing the Ri,j received 
from all its in-neighborsi, and applying a 
damping factor d. 
Map Phase input: <i, Ni|Ri> 
1: output <i, Ni > 
2: for all j in Ni do 
3: Ri,j = Ri |Ni| 
4: output < j, Ri,j> 
5: end for 
Reduce Phase input: < j, {Ri,j ,Nj} > 
6: Rj = dPiRi,j + (1 − d) 
7: output < j, Nj |Rj> 
 
Algorithm3. kmeans in MapReduce 
Kmeans is a commonly used clustering 
algorithm that partitions points into k 
clusters. User denote the ID of a point as 
pid, and its feature values pval. The 
computation starts with selecting k 
random points as cluster centroids set 
{cid, cval}.As shown in Algorithm 3, in 
each iteration, the Map instance on a 
point pid assigns the point to the nearest 
centroid. The Reduce instance on a 
centroid cid updates the centroid by 
averaging the values of all assigned points 
{pval}. 
 
Map Phase input: <pid, pval|{cid, cval} > 
1: cid← find the nearest centroid of pval 
in {cid, cval} 
2: output <cid, pval> Reduce Phase input: 
<cid, {pval} > 
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3: cval← compute the average of {pval} 
4: output <cid, cval> 
 
Algorithm4 GIM-V in MapReduce 
Generalized Iterated Matrix-Vector 
multiplication (GIM-V) is an abstraction of 
many iterative graph mining 
operations.These graph mining algorithms 
can be generally represented by operating 
on an n × n matrix M and a vector v of size 
n. Suppose both the matrix and the vector 
are divided into sub-blocks. Let mi,j 
denote the (i, j)-th block of M and vj 
denote the j- th block of v. The 
computation steps are similar to those of 
the matrix-vector multiplication and can 
be abstracted into three operations: (1) 
mvi,j = combine2(mi,j ,vj); (2) v′i = 
combineAlli({mvi,j}); and (3) vi = assign(vi, 
v′ i).User can compare combine2 to the 
multiplication between mi,j and vj , and 
compare combineAll to the sum of mvi,j 
for row i. Algorithm 4 shows the 
MapReduce implementation with two 
jobs for each iteration. The first job 
assigns vector block vj to multiple matrix 
blocks mi,j (∀i) and performs 
combine2(mi,j , vj ) to obtain mvi,j . The 
second job groups the mvi,j and vi on the 
same i, performs the combineAll({mvi,j}) 
operation, and updates vi using assign (vi , 
v′ i ). 
 
Map Phase 1 input:< (i, j),mi,j> or < j, vj> 
1: if kv-pair is < (i, j),mi,j> then 
2: output < (i, j),mi,j> 
3: else if kv-pair is < j, vj> then 
4: for all i blocks in j’s row do 
5: output < (i, j), vj> 
6: end for 
7: end if 
Reduce Phase 1 input: < (i, j), {mi,j , vj} > 
8: mvi,j = combine2(mi,j , vj ) 
9: output <i, mvi,j>, < j, vj> 
Map Phase 2: output all inputs 

Reduce Phase 2 input: <i, {mvi,j , vi} > 
10: v′ i← combineAll({mvi,j}) 
11: vi ← assign(vi, v′ i) 
12: output <i, vi > 
 
Implementation 
Proposed approach works in the following 
manner,  
Step 1: Collection of evolving datasets  
The evolving datasets will be collected for 
mapping and reduction.  
Step 2: Development of mapping 
technique  
The mapping techniques will be 
developed and the data will be mapped 
using these mapping techniques as shown 
in figure 5 using the concept of MRBG.  
Step 3: Development of reduction 
technique  
The reduction techniques will be 
developed and the mapped data will be 
reduced using these reduction techniques.  
Step 4: Implementation on PageRank and 
K-means algorithm and GIM-V:  
Step 5: Result Analysis and Comparison  

 
 

Figure 5: i2MapReduce 
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1 Advantages of the Proposed System:  

 To our knowledge, i2MapReduce is 
the first MapReducebased solution 
that efficiently supports 
incremental iterative computation.  

 AMRBGStore is designed to 
preserve the fine-grain states in 
the MRBGraph and support 
efficient queries to retrieve fine-
grain states for incremental 
processing.  

 Unlike Incoop, i2MapReduce 
supports kv-pair level fine-grain 
incremental processing in order to 
minimize the amount of re-
computation as much as possible. 

 The current proposal provides 
general purpose support, including 
not only one-to-one, but also one-
to-many, many-to-one, and many-
to-many correspondence.  

 User enhance the Map API to allow 
users to easily express loop-
invariant structure data, and user 
propose a Project API function to 
express the correspondence from 
Reduce to Map. 

 While users need to slightly modify 
their algorithms in order to take 
full advantage of i2MapReduce, 
such modification is modest 
compared to the effort to re-
implement algorithms on a 
completely different programming 
paradigm. 

 User propose to reuse the 
converged state from the previous 
computation and employ a change 

propagation control mechanism. 
 
2 Disadvantages of the Proposed System  
Supporting Smaller Number of State kv-
pairs. In some applications, the number of 
state keys is smaller than n. Kmeans is an 
extreme case with only a single state kv-

pair. In these applications, the total size of 
the state data is typically quite small. 
Therefore, the backward transfer 
overhead is low. Under such situation, 
i2MapReduce does not apply the above 
partition functions. Instead, it partitions 
the structure kv-pairs using MapReduce‟s 
default approach, while replicating the 
state data to each partition. 
 
 

V. EXPERIMENTAL RESULTS AND 
ANALYSIS  

 
After implementing the programming 
models on three different raw data sets, 
the result obtained for k-means 
algorithm,PageRank algorithm and GIM-V, 
is depicted in figure6.it shows the 
performance analysis of i2mapreduce k-
means algorithm,PageRank algorithm and 
GIM-Vi.e., shows the decrease in time 
consumed with respect to i2mapreduce 
model compared to that of MapReduce 
model.  

 
Figure 6: PageRank,K-means and GIM-V 
Algorithm Performance analysis using 
i2MapReduce, 
 
 

VI. Conclusion And Future 
Enhancement: 

We have described I2MapReduce-Fine 
Grain Incremental Processing based on 
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MapReduceframework. That supports k/v 
pair level fine-grain incremental 
processing to minimize the amount of 
recomputation and MRBG-Store to 
support efficient quires for retrieving fine-
grain states for incrementalprocessing and 
to preserve the fine-grain states in MRBG 
This framework combines a fine-grain 
advanceengine, a general-purpose 
iterative model, and a set of effective 
techniques for fine-grain incremental 
iterativecomputation. Real-machine 
experiments show that I2MapReduce can 
significantly reduce the run time to 
refreshbig data mining result compared to 
re-computation on both plain and 
iterative MapReduce. We are studying 
cost-aware execution optimization that 
intelligently uses the MRBGraph state and 
selects the optimal executionstrategy 
based on online cost analysis. 
In future, we are trying to identify the 
data changes whenever there is a dynamic 
updation using FP algorithm. Though 
retrieval of data becomes easier with map 
reduce, the interdependency of map and 
reduce tasks requires more fault 
tolerance. So, we are focusing on good 
fault tolerance solution by analysing and 
experimenting with various computing 
frameworks like pagerank, k-means,GIM-V 
etc.wepropse that array based 
languages,like R are ideal to express these 
algorithms for processing bigdata. 
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